Spiral Ganglion Neuron Projection Development to the Hindbrain in Mice Lacking Peripheral and/or Central Target Differentiation
نویسندگان
چکیده
We investigate the importance of the degree of peripheral or central target differentiation for mouse auditory afferent navigation to the organ of Corti and auditory nuclei in three different mouse models: first, a mouse in which the differentiation of hair cells, but not central auditory nuclei neurons is compromised (Atoh1-cre; Atoh1f/f ); second, a mouse in which hair cell defects are combined with a delayed defect in central auditory nuclei neurons (Pax2-cre; Atoh1f/f ), and third, a mouse in which both hair cells and central auditory nuclei are absent (Atoh1-/-). Our results show that neither differentiated peripheral nor the central target cells of inner ear afferents are needed (hair cells, cochlear nucleus neurons) for segregation of vestibular and cochlear afferents within the hindbrain and some degree of base to apex segregation of cochlear afferents. These data suggest that inner ear spiral ganglion neuron processes may predominantly rely on temporally and spatially distinct molecular cues in the region of the targets rather than interaction with differentiated target cells for a crude topological organization. These developmental data imply that auditory neuron navigation properties may have evolved before auditory nuclei.
منابع مشابه
Afferents of cranial sensory ganglia pathfind to their target independent of the site of entry into the hindbrain.
In vertebrates, sensory neurons interconnect a variety of peripheral tissues and central targets, conveying sensory information from different types of sensory receptors to appropriate second-order neurons in the central nervous system (CNS). To explore the possibility that the different rhombomere environments where sensory neurons enter into the hindbrain affect the pathfinding capability of ...
متن کاملIdentified central neurons convey a mitogenic signal from a peripheral target to the CNS.
Regulation of central neurogenesis by a peripheral target has been previously demonstrated in the ventral nerve cord of the leech Hirudo medicinalis (Baptista, C. A., Gershon, T. R. and Macagno, E. R. (1990). Nature 346, 855-858) Specifically, innervation of the male genitalia by the fifth and sixth segmental ganglia (the sex ganglia) was shown to trigger the birth of several hundred central ne...
متن کاملتأثیر آلودگی صوتی در انتشار گلیکوکانژوگههای سطح سلول در گانگلیون مارپیچی نوزاد موش
Background: Some pregnant women are exposed to occupational noise, a risk factor for the development of the auditory system. The auditory system is one of the areas in embryonic development in which noise might induce aberrant development. Noise can change the gene expression pattern of an embryo and thereby modify the physiology of the auditory system. Therefore, noise can change the molecular...
متن کاملAnalyzing somatosensory axon projections with the sensory neuron-specific Advillin gene.
Peripheral sensory neurons detect diverse physical stimuli and transmit the information into the CNS. At present, the genetic tools for specifically studying the development, plasticity, and regeneration of the sensory axon projections are limited. We found that the gene encoding Advillin, an actin binding protein that belongs to the gelsolin superfamily, is expressed almost exclusively in peri...
متن کاملTherapeutic potential of cell therapy in the repair of hair cells and spiral ganglion neurons: review article
The mammalian cochlea is a highly complex structure which contains several cells, including sensory receptor or hair cells. The main function of the cochlear hair cells is to convert the mechanical vibrations of the sound into electrical signals, then these signals travel to the brain along the auditory nerve. Auditory hair cells in some amphibians, reptiles, fish, and birds can regenerate or r...
متن کامل